Article 29 - Education must develop every child's talents and encourage the respect for human rights

Maths St Paul's CE Primary - Progression themes - Measures with reasoning
For Nursery and reception progress see link LTP overview for maths

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
COMPARING AND ESTIMATING					
compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] * mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] * time [e.g. quicker, slower, earlier, later]	compare and order lengths, mass, volume/capacity and record the results using $>$, < and =		estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3}.
Top tips How do you know that this (object) is heavier / longer / taller than this one? Explain how you know.	Top tips Put these measurements in order starting with the smallest. 75 grammes 85 grammes 100 grammes Explain your thinking	Top Tips Put these measurements in order starting with the largest. Half a litre Quarter of a litre $300 \mathrm{ml}$	Top Tips Put these amounts in order starting with the largest. Half of three litres Quarter of two litres 300 ml	Top Tips Put these amounts in order starting with the largest. $130000 \mathrm{~cm}^{2}$ $1.2 \mathrm{~m}^{2}$ $13 \mathrm{~m}^{2}$ Explain your thinking	Top Tips Put these amounts in order starting with the largest. $100 \mathrm{~cm}^{3}$ $1000000 \mathrm{~mm}^{3}$ $1 \mathrm{~m}^{3}$ Explain your thinking

	Position the symbols Place the correct symbol between the measurements >or < 36 cm 63 cm 130 ml \square 103 ml Explain your thinking	Explain your thinking Position the symbols Place the correct symbol between the measurements >or < 306 cm Half a metre 930 ml \square 1 litre Explain your thinking	Explain your thinking Position the symbols Place the correct symbols between the measurements > or < £23.61 2326p 2623p Explain your thinking		
sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare and sequence intervals of time	compare durations of events, for example to calculate the time taken by particular events or tasks			
		estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)			
Explain thinking Ask pupils to reason and make statements about to the order of daily routines	Undoing The film finishes two hours after it starts. It	Undoing A programme lasting 45 minutes finishes at 5.20. At what time did it start?	Undoing Imran's swimming lesson lasts 50 mins and it takes 15 mins to change and get	Undoing A school play ends at 6.45 pm . The play lasted 2	Undoing A film lasting 200 minutes finished at

in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false? What do we do before break time? etc.	finishes at 4.30. What time did it start? Draw the clock at the start and the finish of the film. Explain thinking The time is $3: 15 \mathrm{pm}$. Kate says that in two hours she will be at her football game which starts at $4: 15$. Is Kate right? Explain why.	Draw the clock at the start and finish time. Explain thinking Salha says that 100 minutes is the same as 1 hour. Is Salha right? Explain why.	ready for the lesson. What time does Imran need to arrive if his lesson finishes at 6.15 pm ? Explain thinking The time is 10:35 am. Jack says that the time is closer to 11:00am than to 10:00am. Is Jack right? Explain why.	hours and 35 minutes. What time did it start? Other possibilities (links with geometry, shape and space) A cuboid is made up of 36 smaller cubes. If the cuboid has the length of two of its sides the same what could the dimensions be? Convince me	17:45. At what time did it start? Other possibilities (links with geometry, shape and space) A cuboid has a volume between 200 and 250 cm cubed. Each edge is at least 4 cm long. List four possibilities for the dimensions of the cuboid..
MEASURING and CALCULATING					
measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds)	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (l / ml)	estimate, compare and calculate different measures, including money in pounds and pence (appears also in Comparing)	use all four operations to solve problems involving measure (e.g. length, mass, volume, money) using decimal notation including scaling.	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Converting)
Application (Can be practical)	Application (Practical)	Write more statements	Write more statements	Write more statements	Write more statements

Which two pieces of string are the same length as this book?	Draw two lines whose lengths differ by 4 cm .	(You may choose to consider this practically) If there are 630 ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Make up some more questions like this	One battery weighs the same as 60 paperclips; One pencil sharpener weighs the same as 20 paperclips. Write down some more things you know. How many pencil sharpeners weigh the same as a battery?	Mr Smith needs to fill buckets of water. A large bucket holds 6 litres and a small bucket holds 4 litres. If a jug holds 250 ml and a bottle holds 500 ml suggest some ways of using the jug and bottle to fill the buckets.	Chen, Megan and Sam have parcels. Megan's parcel weighs 1.2 kg and Chen's parcel is 1500 g and Sam's parcel is half the weight of Megan's parcel. Write down some other statements about the parcels. How much heavier is Megan's parcel than Chen's parcel?
		measure the perimeter of simple 2-D shapes	measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres	recognise that shapes with the same areas can have different perimeters and vice versa
		Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter? $8 \mathrm{~cm} \quad 18 \mathrm{~cm}$ 24 cm 25 cm	Testing conditions If the width of a rectangle is 3 metres less than the length and the perimeter is between 20 and 30 metres, what could the dimensions of the rectangle lobe? Convince me.	Testing conditions Shape A is a rectangle that is 4 m long and 3 m wide. Shape B is a square with sides 3 m . The rectangles and squares are put together side by side to make a path which has perimeter between 20 and 30 m . For example \square	Testing conditions A square has the perimeter of 12 cm . When 4 squares are put together, the perimeter of the new shape can be calculated. For example:

				Can you draw some other arrangements where the perimeter is between 20 and 30 metres?	What arrangements will give the maximum perimeter?
recognise and know the value of different denominations of coins and notes	recognise and use symbols for pounds ($\mathbf{£}$) and pence (p); combine amounts to make a particular value	add and subtract amounts of money to give change, using both $£$ and p in practical contexts			
	find different combinations of coins that equal the same amounts of money				
	solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change				
Possibilities Ella has two silver coins. How much money might she have?	Possibilities How many different ways can you make 63p using only 20p, 10p and 1p coins?	Possibilities I bought a book which cost between $£ 9$ and $£ 10$ and I paid with a ten pound note. My change was between 50 p and $£ 1$ and was all in silver coins. What price could I have paid?	Possibilities Adult tickets cost $£ 8$ and Children’s tickets cost $£ 4$. How many adult and children's tickets could I buy for $£ 100$ exactly? Can you find more than one way of doing this?		

			find the area of rectilinear shapes by counting squares	calculate and compare the area of squares and rectangles including using standard units, square centimetres (cm^{2}) and square metres (m^{2}) and estimate the area of irregular shapes recognise and use square numbers and cube numbers, and the notation for squared (') and cubed (${ }^{3}$) (copied from Multiplication and Division)	calculate the area of parallelograms and triangles calculate, estimate and compare volume of cube and cuboids using standard units, including cubic centimetres (cm^{3}) and cubic metres (m^{3}), and extending to other units [e.g. mm^{3} and km^{3}]. recognise when it is possible to use formulae for area and volume of shapes
			Always, sometimes, never If you double the area of a rectangle, you double the perimeter. See also Geometry Properties of Shape	Always, sometimes, never When you cut off a piece of a shape you reduce its area and perimeter. See also Geometry Properties of Shape	Always, sometimes, never The area of a triangle is half the area of the rectangle that encloses it

	started and when it finished 15 minutes later at 10:35.	what time did his bus leave? $\text { 9:05 } \quad 8: 55 \quad 8: 45$	A: Quarter to four in the afternoon B: 07:56 C: six minutes to nine in the evening D: 14:36	105 minutes 1 hour 51 minutes 6360 seconds	
CONVERTING					
	know the number of minutes in an hour and the number of hours in a day. (appears also in Telling the Time)	know the number of seconds in a minute and the number of days in each month, year and leap year	convert between different units of measure (e.g. kilometre to metre; hour to minute)	convert between different units of metric measure (e.g. kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre)	use, read, write and convert between standar units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places
			read, write and convert time between analogue and digital 12 and 24-hour clocks (appears also in Converting)	solve problems involving converting between units of time	solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate (appears also in Measuring and Calculating)
			solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days (appears also in Telling the Time)	understand and use equivalences between metric units and common imperial units such as inches, pounds and pints	convert between miles and kilometres

