Maths St Paul's CE Primary - Progression themes - Multiplication and division

For Nursery and reception progress see link LTP overview for maths
Calculation policy to be used to support planning, teaching and delivery

MULTIPLICATION \& DIVISION FACTS					
Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
count in multiples of twos, fives and tens (copied from Number and Place Value)	count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward or backward (copied from Number and Place Value)	count from 0 in multiples of $4,8,50$ and 100 (copied from Number and Place Value)	count in multiples of 6, 7, 9, 25 and 1000 (copied from Number and Place Value)	count forwards or backwards in steps of powers of 10 for any given number up to 1000000 (copied from Number and Place Value)	
	recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers	recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables	recall multiplication and division facts for multiplication tables up to 12×12		
	Missing numbers $10=5 x$ \square What number could be written in the box? Making links I have 30p in my pocket in 5 p coins. How many coins do I have?	Missing numbers $24=\square \times \square$ Which pairs of numbers could be written in the boxes? Making links Cards come in packs of 4. How many packs do I	Missing numbers $72=\square \times \square$ Which pairs of numbers could be written in the boxes? Making links Eggs are bought in boxes of 12.1 need 140 eggs; how	Missing numbers $\begin{aligned} & 6 \times 0.9=\square \times 0.03 \\ & 6 \times 0.04=0.008 \times \square \end{aligned}$ Which numbers could be written in the boxes?	Missing numbers $2.4 \div 0.3=\square \times 1.25$ Which number could be written in the box? Making links

	need to buy to get 32 cards?	many boxes will I need to buy?	Making links Apples weigh about 170 g each. How many apples would you expect to get in a 2 kg bag?	
MENTAL CALCULATION				
	write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times onedigit numbers, using mental and progressing to formal written methods (appears also in Written Methods)	use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers	multiply and divide numbers mentally drawing upon known facts	perform mental calculations, including with mixed operations and large numbers
	Use a fact $20 \times 3=60$ Use this fact to work out $\begin{aligned} & 21 \times 3=22 \times 3= \\ & 23 \times 3=24 \times 3= \end{aligned}$	Use a fact $63 \div 9=7$ Use this fact to work out $\begin{aligned} & 126 \div 9= \\ & 252 \div 7= \end{aligned}$	Use a fact $3 \times 75=225$ Use this fact to work out $\begin{aligned} & 450 \div 6= \\ & 225 \div 0.6= \end{aligned}$ To multiply by 25 you multiply by 100 and	Use a fact $12 \times 1.1=13.2$ Use this fact to work out $\begin{aligned} & 15.4 \div 1.1= \\ & 27.5 \div 1.1= \end{aligned}$

						then divide by 4. Use this strategy to solve $\begin{array}{ll} 48 \times 25 & 78 \times 25 \\ 4.6 \times 25 & \end{array}$	
	show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot				recognise and use factor pairs and commutativity in mental calculations (appears also in Properties of Numbers)	multiply and divide whole numbers and those involving decimals by 10, 100 and 1000	associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. $3 / 8$) (copied from Fractions)
Making links If one teddy has two apples, how many apples will three teddies have? Here are 10 lego people If 2 people fit into the train carriage, how many carriages do we need?	Making links Write the multiplication number sentences to describe this array		 Cribe X X ce?	Making links $4 \times 6=24$ How does this fact help you to solve these calculations? $\begin{aligned} & 40 \times 6= \\ & 20 \times 6= \\ & 24 \times 6= \end{aligned}$	Making links How can you use factor pairs to solve this calculation? $\begin{aligned} & 13 \times 12 \\ & (13 \times 3 \times 4,13 \times 3 \times 2 \times \\ & 2,13 \times 2 \times 6) \end{aligned}$	Making links $7 \times 8=56$ How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.8= \\ & 5.6 \div 8= \end{aligned}$	Making links $0.7 \times 8=5.6$ How can you use this fact to solve these calculations? $\begin{aligned} & 0.7 \times 0.08= \\ & 0.56 \div 8= \end{aligned}$
WRITTEN CALCULATION							
	calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times),			write and calculate mathematical statements for multiplication and division using the multiplication tables that they know,	multiply two-digit and three-digit numbers by a one-digit number using formal written layout	multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers	multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication

				and composite (nonprime) numbers	express fractions in the same denomination (copied from Fractions)
				establish whether a number up to 100 is prime and recall prime numbers up to 19	
				recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm^{3}) and cubic metres (m^{3}), and extending to other units such as mm^{3} and km^{3} (copied from Measures)
Spot the mistake Use a puppet to count but make some deliberate mistakes. $\begin{array}{lllll} \text { e.g. } 2 & 4 & 5 & 6 \\ 10 & 9 & 8 & 6 & \end{array}$ See if the pupils can spot the deliberate mistake and correct the puppet	True or false? When you count up in tens starting at 5 there will always be 5 units.	True or false? All the numbers in the two times table are even. There are no numbers in the three times table that are also in the two times table.	Always, sometimes, never? Is it always, sometimes or never true that an even number that is divisible by 3 is also divisible by 6 . Is it always, sometimes or never true that the sum of four even numbers is divisible by 4.	Always, sometimes, never? Is it always, sometimes or never true that multiplying a number always makes it bigger Is it always, sometimes or never true that prime numbers are odd. Is it always, sometimes or never true that when you multiply a whole number by 9 , the sum	Always, sometimes, never? Is it always, sometimes or never true that dividing a whole number by a half makes the answer twice as big. Is it always, sometimes or never true that when you square an even number, the result is divisible by 4

				of its digits is also a multiple of 9 Is it always, sometimes or never true that a square number has an even number of factors.	Is it always, sometimes or never true that multiples of 7 are 1 more or 1 less than prime numbers.
ORDER OF OPERATIONS					
					use their knowledge of the order of operations to carry out calculations involving the four operations
					Which is correct? Which of these number sentences is correct? $\begin{aligned} & 3+6 \times 2=15 \\ & 6 \times 5-7 \times 4=92 \\ & 8 \times 20 \div 4 \times 3=37 \end{aligned}$

PROBLEM SOLVING					
solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher	solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts	solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	solve problems involving multiplication and division including using their knowledge of factors and multiples, squares and cubes	solve problems involving addition, subtraction, multiplication and division
				solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign	
				solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates	solve problems involving similar shapes where the scale factor is known or can be found (copied from Ratio and Proportion)

