Maths St Paul's CE Primary - Progression themes, with reasoning - Algebra

For Nursery and reception progress see link LTP overview for maths

Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
EQUATIONS					
solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ (copied from Addition and Subtraction)	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. (copied from Addition and Subtraction)	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. (copied from Addition and Subtraction) solve problems, including missing number problems, involving multiplication and division, including integer scaling (copied from Multiplication and Division)		use the properties of rectangles to deduce related facts and find missing lengths and angles (copied from Geometry: Properties of Shapes)	express missing number problems algebraically
	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 (copied from Addition and Subtraction)				find pairs of numbers that satisfy number sentences involving two unknowns

represent and use number bonds and related subtraction facts within 20 (copied from Addition and Subtraction)					enumerate all possibilities of combinations of two variables
Connected Calculations $\begin{aligned} & 11=3+8 \\ & 12=4+8 \\ & 13=\square+8 \\ & 14=\square+8 \end{aligned}$ What numbers go in the boxes? Can you continue this sequence of calculations?	Connected Calculations Put the numbers 19,15 and 4 in the boxes to make the number sentences correct. $=$ \square - \square \square $=$ \square $+$ \square	Connected Calculations Put the numbers 3,12 , 36 in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square \times \square \\ & \square=\square \div \square \end{aligned}$	Connected Calculations Put the numbers $7.2,8$, 0.9 in the boxes to make the number sentences correct. $\begin{aligned} & \square=\square \times \square \\ & \square=\square \div \square \end{aligned}$	Connected Calculations The number sentence below represents the angles in degrees of an isosceles triangle. $A+B+C=180$ degrees A and B are equal and are multiples of 5 . Give an example of what the 3 angles could be. Write down 3 more examples	Connected Calculations p and q each stand for whole numbers. $p+q=1000$ and p is 150 greater than q . Work out the values of p and q.
FORMULAE					
			Perimeter can be expressed algebraically as $2(a+b)$ where a and b are the dimensions in the same unit. (Copied from NSG measurement)		use simple formulae recognise when it is possible to use formulae for area and volume of shapes (copied from Measurement)
			Undoing	Undoing	Undoing

	(copied from Geometry: position and direction)			
	True or false? Explain The largest three digit number that can be made from the digits 2, 4 and 6 is 264. Is this true or false? Explain your thinking.			Generalising

