Maths St Paul's CE Primary - Progression themes - Geometry property of shapes

For Nursery and reception progress see link LTP overview for maths

shapes. Tell me one thing that's the same about them. Tell me one thing that is different about them. Visualising Put some shapes in a bag. Find me a shape that has more than three edges.	Do they all have straight edges and flat faces? What is the same and what is different about these shapes? Visualising In your head picture a rectangle that is twice as long as it is wide. What could its measurements be?	different about these three2-D shapes? Visualising I am thinking of a 3dimensional shape which has faces that are triangles and squares. What could my shape be?	the diagonals of these 2-D shapes? Visualising Imagine a square cut along the diagonal to make two triangles. Describe the triangles. Join the triangles on different sides to make new shapes. Describe them. (you could sketch them) Are any of the shapes symmetrical? Convince me.	of a cube and the net of a cuboid? Visualising I look at a large cube which is made up of smaller cubes. If the larger cube is made up of between 50 and 200 smaller cubes what might it look like?	nets of a triangular prism and a square based pyramid? Visualising Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make. List all the possibilities.
DRAWING AND CONSTRUCTING					
		draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees (${ }^{\circ}$)	draw 2-D shapes using given dimensions and angles recognise, describe and build simple 3-D shapes, including making nets (appears also in Identifying Shapes and Their Properties)

	Other possibilities Oneface of a 3-D shape looks like this. \square What could it be? Are there any other possibilities?	Other possibilities Can you draw a non-right angled triangle with a line of symmetry? Are there other possibilities.	Other possibilities Here is one angle of an isosceles triangle. You will need to measure the angle accurately. What could the other angles of the triangle be? Are there any other possibilities?	Other possibilities If one angle of an isosceles triangle is 36 degrees. What could the triangle look like draw it. Are there other possibilities. Draw a net for a cuboid that has a volume of 24 cm^{3}.
COMPARING AND CLASSIFYING				
compare and sort common 2-D and 3-D shapes and everyday objects		compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons

True or false? All 2-D shapes have at least 4 sides	Always, sometimes, never Is it always, sometimes or nerver true that when you fold a square in half you get a rectangle.	Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length.	Always, sometimes, never Is it always, sometimes or never true that the two diagonals of a rectangle meet at right angles.	Always, sometimes, never Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides n.	Always, sometimes, never Is it always, sometimes or never true that, in a polyhedron, the number of vertices plus the number of faces equals the number of edges.
Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides"	Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides and all sides are the same length"	Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides that are different lengths."	Other possibilities Can you show or draw a polygon that fits both of these criteria? What do you look for? "Has exactly two equal sides." "Has exactly two parallel sides."	Other possibilities A rectangular field has a perimeter between 14 and 20 metres. What could its dimensions be?	Other possibilities Not to scale The angle at the top of this isosceles triangle is 110 degrees. What are the other angles in the triangle?
ANGLES					
		recognise angles as a property of shape or a description of a turn		know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles	
		identify right angles, recognise that two right angles make a half-turn, three make three quarters of a	identify acute and obtuse angles and compare and order angles up to two right angles by size	identify: * angles at a point and one whole turn (total 360°)	recognise angles where they meet at a point, are on a straight line, or are vertically

		turn and four a complete turn; identify whether angles are greater than or less than a right angle		* angles at a point on a straight line and $1 / 2$ a turn (total 180°) * other multiples of 90°	opposite, and find missing angles
		identify horizontal and vertical lines and pairs of perpendicular and parallel lines			
		Convince me Which capital letters have perpendicular and / or parallel lines? Convince me.	Convince me Ayub says that he can draw a right angled triangle which has another angle which is obtuse. Is he right? Explain why.	Convince me What is the angle between the hands of a clock at four o clock? At what other times is the angle between the hands the same? Convince me	Convince me One angle at the point where the diagonals of a rectangle meet is 36 degrees. What could the other angles be? Convince me

